资源类型

期刊论文 375

会议视频 2

年份

2024 1

2023 34

2022 43

2021 39

2020 19

2019 38

2018 26

2017 32

2016 16

2015 13

2014 13

2013 16

2012 12

2011 13

2010 3

2009 20

2008 8

2007 13

2004 4

2003 1

展开 ︾

关键词

固体氧化物燃料电池 6

生物降解 3

低温铝电解 2

制氢 2

即时医疗 2

可再生能源 2

合成生物学 2

固体氧化物电解池 2

干细胞 2

微生物代谢 2

微生物安全 2

惰性阳极 2

燃料电池 2

生物表面活性剂 2

碳基燃料 2

调节性T细胞 2

铝电解 2

2-羟基丁酸 1

3D打印 1

展开 ︾

检索范围:

排序: 展示方式:

Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline

Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1348-4

摘要: Abstract • High hydrogen yield is recovered from thermal-alkaline pretreated sludge. • Separating SFL by centrifugation is better than filtration for hydrogen recovery. • The cascaded bioconversion of complex substrates in MECs are studied. • Energy and electron efficiency related to substrate conversion are evaluated. The aim of this study was to investigate the biohydrogen production from thermal (T), alkaline (A) or thermal-alkaline (TA) pretreated sludge fermentation liquid (SFL) in a microbial electrolysis cells (MECs) without buffer addition. Highest hydrogen yield of 36.87±4.36 mgH2/gVSS (0.026 m3/kg COD) was achieved in TA pretreated SFL separated by centrifugation, which was 5.12, 2.35 and 43.25 times higher than that of individual alkaline, thermal pretreatment and raw sludge, respectively. Separating SFL from sludge by centrifugation eliminated the negative effects of particulate matters, was more conducive for hydrogen production than filtration. The accumulated short chain fatty acid (SCFAs) after pretreatments were the main substrates for MEC hydrogen production. The maximum utilization ratio of acetic acid, propionic acid and n-butyric acid was 93.69%, 90.72% and 91.85%, respectively. These results revealed that pretreated WAS was highly efficient to stimulate the accumulation of SCFAs. And the characteristics and cascade bioconversion of complex substrates were the main factor that determined the energy efficiency and hydrogen conversion rate of MECs.

关键词: Waste activated sludge (WAS)     Short chain fatty acids (SCFAs)     Hydrogen     Pretreatment     Microbial electrolysis cells (MECs)    

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1084-1095 doi: 10.1007/s11783-015-0805-y

摘要: Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L ?h for Cu(II) at an initial concentration of 50 mg?L and 5.3±0.4 mg?L h for Co(II) at an initial 40 mg?L were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L ?h ) and Co(II) (6.4 mg?L ?h ) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol COD). Phylogenetic analysis on the biocathodes indicates dominantly accounted for 67.9% of the total reads, followed by (14.0%), (6.1%), (2.5%), (1.4%), and (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.

关键词: biocathode     microbial electrolysis cell     microbial fuel cell     Cu(II) removal     Co(II) removal    

Efficient production of hydrogen peroxide in microbial reverse-electrodialysis cells coupled with thermolytic

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1708-y

摘要:

● Appreciable H2O2 production rate was achieved in MRCs utilizing NH4HCO3 solutions.

关键词: Microbial reverse-electrodialysis cell     Hydrogen peroxide production     Ammonium bicarbonate     Electrolysis cell     Optimization    

Response of indigenous Cd-tolerant electrochemically active bacteria in MECs toward exotic Cr(VI) based

Xia Hou, Liping Huang, Peng Zhou, Hua Xue, Ning Li

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1057-4

摘要:

Cell membrane of indigenous Cd-tolerant EAB harbored more cadmium than chromium.

Indigenous Cd-tolerant EAB cytoplasm located more chromium than cadmium.

Simultaneously quantitatively imaging Cd(II) and Cr(III) ions in EAB was achieved.

Current accelerated the harboring of cadmium in EAB at an initial 2 h.

Current directed the accumulation of more chromium in EAB over time.

关键词: Microbial electrolysis cell     Electrochemically active bacteria     Cd-tolerant bacteria     Cd(II) and Cr(VI)     Fluorescence probe    

Plasma spray coating on interconnector toward promoted solid oxide fuel cells and solid oxide electrolysiscells

《能源前沿(英文)》 doi: 10.1007/s11708-023-0901-9

摘要: Interconnector is a critical component to construct solid oxide cells (SOCs) stack. Oxidation of metallic interconnectors and Cr poisoning caused by oxidation are important factors that lead to long-term performance degradation of SOCs. Coating on the interconnector surface is an important approach to inhibit the oxidation and Cr migration of the interconnector. Herein, (La0.75Sr0.25)0.95MnO3–δ (LSM) and Mn1.5Co1.5O4 (MCO) are used to fabricate the coatings of interconnector. Two advanced thermal spray technology, atmospheric plasma spraying (APS) and low-pressure plasma spray (LPPS), are adopted for the coating preparation. The electrochemical performance, rising and cooling cycle stability, and Cr diffusion inhibition performance of the coatings are tested and evaluated. The result indicates that MCO can generate more uniform and denser coatings than LSM. In addition, MCO coatings prepared by LPPS shows the best electrochemical performance, rising and cooling cycle stability, and Cr diffusion inhibition. The initial area specific resistance (ASR) is 0.0027 Ω·cm2 at 800 °C. After 4 cooling cycle tests, the ASR increases to 0.0032 Ω·cm2 but lower than other samples. Meanwhile, the relative intense of Cr at the interface of SUS430 with MCO coatings fabricated by LPPS is lower than that of MCO fabricated by APS after 4 rising and cooling cycle operations, showing more favorable Cr diffusion inhibition performance.

关键词: interconnector coating     plasma spray     electrochemical performance     Cr diffusion inhibition     solid oxide cells (SOCs)    

Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production

Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1191-7

摘要: MEDCC combined with Fenton process was developed to treat real pesticide wastewater. Pesticide removal was attributable to desalination in the MEDCC. High COD removal was attributable to organic distributions in different chambers. The combination of the microbial electrolysis desalination and chemical-production cell (MEDCC) and Fenton process for the pesticide wastewater treatment was investigate in this study. Real wastewater with several toxic pesticides, 1633 mg/L COD, and 200 in chromaticity was used for the investigation. Results showed that desalination in the desalination chamber of MEDCC reached 78%. Organics with low molecular weights in the desalination chamber could be removed from the desalination chamber, resulting in 28% and 23% of the total COD in the acid-production and cathode chambers, respectively. The desalination in the desalination chamber and organic transfer contributed to removal of pesticides (e.g., triadimefon), which could not be removed with other methods, and of the organics with low molecular weights. The COD in the effluent of the MEDCC combined the Fenton process was much lower than that in the perixo-coagulaiton process (<150 vs. 555 mg/L). The combined method consumed much less energy and acid for the pH adjustment than that the Fenton.

关键词: Pesticide wastewater     COD removal     Microbial electrolysis desalination and chemical-production cell     Energy consumption     Fenton oxidation    

Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupledwith iron-carbon micro-electrolysis

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1409-3

摘要:

• MFC promoted the nitrogen removal of anammox with Fe-C micro-electrolysis.

关键词: Waste tire     MFCs     Micro-electrolysis     Anammox     Feammox    

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 624-630 doi: 10.1007/s11783-013-0584-2

摘要: A biocathode with microbial catalyst in place of a noble metal was successfully developed for hydrogen evolution in a microbial electrolysis cell (MEC). The strategy for fast biocathode cultivation was demonstrated. An exoelectrogenic reaction was initially extended with an H -full atmosphere to enrich H -utilizing bacteria in a MEC bioanode. This bioanode was then inversely polarized with an applied voltage in a half-cell to enrich the hydrogen-evolving biocathode. The electrocatalytic hydrogen evolution reaction (HER) kinetics of the biocathode MEC could be enhanced by increasing the bicarbonate buffer concentration from 0.05 mol·L to 0.5 mol·L and/or by decreasing the cathode potential from -0.9 V to -1.3 V vs. a saturated calomel electrode (SCE). Within the tested potential region in this study, the HER rate of the biocathode MEC was primarily influenced by the microbial catalytic capability. In addition, increasing bicarbonate concentration enhances the electric migration rate of proton carriers. As a consequence, more mass H can be released to accelerate the biocathode-catalyzed HER rate. A hydrogen production rate of 8.44 m ·m ·d with a current density of 951.6 A·m was obtained using the biocathode MEC under a cathode potential of -1.3 V vs. SCE and 0.4 mol·L bicarbonate. This study provided information on the optimization of hydrogen production in biocathode MEC and expanded the practical applications thereof.

关键词: microbial electrolysis cell (MEC)     biocathode     hydrogen production     bicarbonate     cathode potential    

Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance

Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1049-4

摘要:

OsMFC can simultaneously recover electricity and water from wastewater.

Membrane fouling played an important role in flux decline of FO membrane in OsMFCs.

Biofouling was the major fouling of the FO membrane in OsMFCs.

The growth of biofouling layer on the FO membrane can be divided into three stages.

Microorganisms were the dominant biofoulant in the biofouling layer.

关键词: Microbial fuel cell     Forward osmosis     Membrane fouling     Biofouling     Wastewater treatment    

wetland plant fermentation broth on nitrogen removal and bioenergy generation in constructed wetland-microbialfuel cells

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1592-x

摘要:

● Fermentation broth facilitates N removal and energy yields in tertiary CW-MFC.

关键词: Constructed wetland     Microbial fuel cell     Nitrogen removal     Bioenergy generation     Carbon source    

Nitrogen recovery from wastewater using microbial fuel cells

Yong XIAO,Yue ZHENG,Song WU,Zhao-Hui YANG,Feng ZHAO

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 185-191 doi: 10.1007/s11783-014-0730-5

摘要: Nitrogen is one of major contaminants in wastewater; however, nitrogen, as bio-elements for crop growth, is the indispensable fertilizer in agriculture. In this study, two-chamber microbial fuel cells (MFCs) were first operated with microorganisms in anode chamber and potassium ferricyanide as catholyte. After being successfully startup, the two-chamber MFCs were re-constructed to three-chamber MFCs which were used to recover the and of synthetic wastewater into value-added nitrogenous fertilizer from cathode chamber and anode chamber, respectively. Ferric nitrate was used as the sole electron acceptor in cathode, which also was used to evaluate the recover efficiency in the case major anion of in cathode. The output voltage of these MFCs was about 600–700 mV at an external load of 500 Ω. About 47% in anode chamber and 83% in cathode chamber could be recovered. Higher current density can selectively improve the recovery efficiency of both and . The study demonstrated a nitrogen recovery process from synthetic wastewater using three-chamber MFCs.

关键词: nitrogen recovery     microbial fuel cells (MFCs)     electromigration     wastewater treatment    

Electroactivity of the magnetotactic bacteria AMB-1 and MSR-1

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1808-3

摘要:

● The first study of electrochemically active magnetotactic bacteria.

关键词: Magnetotactic bacteria     Magnetospirillum magneticum     Magnetospirillum gryphiswaldense     Extracellular electron transfer     Microbial fuel cells    

The world’s first offshore wind power non-desalination of seawater electrolysis for hydrogen production

《能源前沿(英文)》 2023年 第17卷 第3期   页码 317-319 doi: 10.1007/s11708-023-0888-2

摘要: The world’s first offshore wind power non-desalination of seawater electrolysis for hydrogen production successfully tested in Fujian, China

关键词: China     wind power non    

Fate of proteins of waste activated sludge during thermal alkali pretreatment in terms of sludge protein recovery

Xiaoli Song, Zhenghua Shi, Xiufen Li, Xinhua Wang, Yueping Ren

《环境科学与工程前沿(英文)》 2019年 第13卷 第2期 doi: 10.1007/s11783-019-1114-7

摘要:

Maillard reaction between reducing sugars and amides happened during pretreatment.

Over 90 min of TAH at the optimal condition, 67.59% sludge proteins was solubilized.

15.84% soluble proteins broke down to materials with small molecular weight.

关键词: Sludge flocs     Microbial cells     Hydrolysate     Protein breakdown     Melanoidin    

Responses of microbial interactions to elevated salinity in activated sludge microbial community

《环境科学与工程前沿(英文)》 2023年 第17卷 第5期 doi: 10.1007/s11783-023-1660-x

摘要:

● Salinity led to the elevation of NAR over 99.72%.

关键词: Elevated salinity     Activated sludge system     Pollution removal     Microbial interactions     Competitive relationship    

标题 作者 时间 类型 操作

Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline

Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu

期刊论文

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

期刊论文

Efficient production of hydrogen peroxide in microbial reverse-electrodialysis cells coupled with thermolytic

期刊论文

Response of indigenous Cd-tolerant electrochemically active bacteria in MECs toward exotic Cr(VI) based

Xia Hou, Liping Huang, Peng Zhou, Hua Xue, Ning Li

期刊论文

Plasma spray coating on interconnector toward promoted solid oxide fuel cells and solid oxide electrolysiscells

期刊论文

Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production

Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang

期刊论文

Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupledwith iron-carbon micro-electrolysis

期刊论文

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

期刊论文

Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance

Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li

期刊论文

wetland plant fermentation broth on nitrogen removal and bioenergy generation in constructed wetland-microbialfuel cells

期刊论文

Nitrogen recovery from wastewater using microbial fuel cells

Yong XIAO,Yue ZHENG,Song WU,Zhao-Hui YANG,Feng ZHAO

期刊论文

Electroactivity of the magnetotactic bacteria AMB-1 and MSR-1

期刊论文

The world’s first offshore wind power non-desalination of seawater electrolysis for hydrogen production

期刊论文

Fate of proteins of waste activated sludge during thermal alkali pretreatment in terms of sludge protein recovery

Xiaoli Song, Zhenghua Shi, Xiufen Li, Xinhua Wang, Yueping Ren

期刊论文

Responses of microbial interactions to elevated salinity in activated sludge microbial community

期刊论文